The conjugate of the pointwise maximum of two convex functions revisited

Radu Ioan Bot · Gert Wanka

Received: 5 July 2006 / Accepted: 31 January 2008 / Published online: 14 February 2008 © Springer Science+Business Media, LLC. 2008

Abstract In this paper we use the tools of the convex analysis in order to give a suitable characterization for the epigraph of the conjugate of the pointwise maximum of two proper, convex and lower semicontinuous functions in a normed space. By using this characterization we obtain, as a natural consequence, the formula for the biconjugate of the pointwise maximum of two functions, provided the so-called Attouch–Brézis regularity condition holds.

 $\textbf{Keywords} \quad \text{Pointwise maximum} \cdot \text{Conjugate functions} \cdot \text{Attouch-Br\'{e}zis regularity condition}$

AMS Subject Classification 49N15 · 90C25 · 90C46

1 Introduction and preliminaries

Let X be a nontrivial normed space and X^* its topological dual space. By $\sigma(X^*, X)$ we denote the weak* topology induced by X on X^* , by $\|\cdot\|_{X^*}$ the dual norm of X^* and by $\langle x^*, x \rangle$ the value at $x \in X$ of the continuous linear functional $x^* \in X^*$. For a set $D \subseteq X$ we denote the *closure* and the *convex hull* of D by cl(D) and co(D), respectively. We also use the *strong quasi relative interior* of a nonempty convex set D denoted sqri(D), which contains all the elements $x \in D$ for which the cone generated by D - x is a closed linear subspace. Furthermore, the *indicator function* of a nonempty set $D \subseteq X$ is denoted by δ_D .

Considering now a function $f: X \to \overline{\mathbb{R}} = \mathbb{R} \cup \{\pm \infty\}$, we denote by $\mathrm{dom}(f) = \{x \in X: f(x) < +\infty\}$ its *effective domain* and by $\mathrm{epi}(f) = \{(x,r) \in X \times \mathbb{R}: f(x) \leq r\}$ its *epigraph*. We say that $f: X \to \overline{\mathbb{R}}$ is *proper* if $f(x) > -\infty$ for all $x \in X$ and $\mathrm{dom}(f) \neq \emptyset$. The (Fenchel-Moreau) *conjugate function* of f is $f^*: X^* \to \overline{\mathbb{R}}$ defined by $f^*(x^*) = \sup_{x \in X} \{\langle x^*, x \rangle - f(x) \}$. The *lower semicontinuous hull* of f is denoted by

Faculty of Mathematics, Chemnitz University of Technology, 09107 Chemnitz, Germany e-mail: radu.bot@mathematik.tu-chemnitz.de

G. Wanka

e-mail: gert.wanka@mathematik.tu-chemnitz.de

R. I. Bot (⋈) · G. Wanka

 $\mathrm{cl}(f)$, while the *biconjugate* of f is the function $f^{**}: X^{**} \to \overline{\mathbb{R}}$ defined by $f^{**}(x^{**}) = (f^*)^*(x^{**})$.

Definition 1.1 Let $f, g: X \to \overline{\mathbb{R}}$ be given. The function $f \Box g: X \to \overline{\mathbb{R}}$ defined by

$$f\Box g(x) = \inf \{ f(y) + g(x - y) : y \in X \}$$

is called the infimal convolution function of f and g. We say that $f \square g$ is exact if for all $x \in X$ there exists some $y \in X$ such that $f \square g(x) = f(y) + g(x - y)$.

Having two proper functions $f, g: X \to \overline{\mathbb{R}}$, we denote by $f \vee g: X \to \overline{\mathbb{R}}$ $f \vee g(x) = \max\{f(x), g(x)\}$ the pointwise maximum of f and g. In this paper we rediscover first the formula for the conjugate of $f \vee g$. This formula is a classical one in the convex analysis (see, for example, [5] and [7]), but we show how it can be obtained as a nice application of the Lagrange duality theory.

Then we represent $\operatorname{epi}((f \vee g)^*)$ as the closure of the reunion of the epigraphs of the conjugates of all convex combinations $\lambda f + (1 - \lambda)g$, when $\lambda \in (0, 1)$, where the closure can be taken both in $(X^*, \sigma(X^*, X)) \times \mathbb{R}$ and in $(X^*, \|\cdot\|_{X^*}) \times \mathbb{R}$. This formulae turn out to be suitable in order to show that $(f \vee g)^{**} = f^{**} \vee g^{**}$, provided a regularity condition is fulfilled. In this way, on the one hand, we extend and, on the other hand, we give a simpler proof of Theorem 6 in [5].

Throughout this paper we assume that $f, g: X \to \overline{\mathbb{R}}$ are proper, convex and lower semicontinuous functions fulfilling $dom(f) \cap dom(g) \neq \emptyset$.

For all $x^* \in X^*$ we have

$$-(f \lor g)^*(x^*) = \inf_{\substack{x \in \text{dom}(f) \cap \text{dom}(g), y \in \mathbb{R}, \\ f(x) - y \le 0, g(x) - y \le 0}} \{y - \langle x^*, x \rangle\}.$$

Since between the convex optimization problem

$$\inf_{\substack{x \in \text{dom}(f) \cap \text{dom}(g), y \in \mathbb{R}, \\ f(x) - y \le 0, g(x) - y \le 0}} \{ y - \langle x^*, x \rangle \}$$

and its Lagrange dual

$$\sup_{\lambda \ge 0, \mu \ge 0} \inf_{\substack{x \in \mathrm{dom}(f) \cap \mathrm{dom}(g), \\ y \in \mathbb{R}}} \{ y - \langle x^*, x \rangle + \lambda (f(x) - y) + \mu (g(x) - y) \}$$

strong duality holds, we obtain

$$-(f \vee g)^*(x^*) = \max_{\lambda \in [0,1]} \inf_{x \in \text{dom}(f) \cap \text{dom}(g)} [\lambda f(x) + (1-\lambda)g(x) - \langle x^*, x \rangle].$$

Throughout the paper we write max(min) instead of sup(inf) in order to point out that the supremum(infimum) is attained.

With the conventions $0f := \delta_{\text{dom}(f)}$ and $0g := \delta_{\text{dom}(g)}$ the conjugate of $f \vee g$ turns out to be (see also [5,7])

$$(f \vee g)^{*}(x^{*}) = \min_{\lambda \in [0,1]} \sup_{x \in X} \left[\langle x^{*}, x \rangle - \lambda f(x) - (1 - \lambda)g(x) \right]$$

= $\min_{\lambda \in [0,1]} (\lambda f + (1 - \lambda)g)^{*}(x^{*}).$ (1)

Obviously, (1) leads to the following formula for the epigraph of $(f \vee g)^*$

$$\operatorname{epi}((f \vee g)^{*}) = \bigcup_{\lambda \in [0,1]} \operatorname{epi}\left((\lambda f + (1-\lambda)g)^{*}\right)$$

$$= \bigcup_{\lambda \in (0,1)} \operatorname{epi}\left((\lambda f + (1-\lambda)g)^{*}\right) \bigcup \operatorname{epi}\left((f + \delta_{\operatorname{dom}(g)})^{*}\right) \bigcup \operatorname{epi}\left((g + \delta_{\operatorname{dom}(f)})^{*}\right). \tag{2}$$

2 An alternative formulation for $epi((f \lor g)^*)$

In this section we assume first that the dual space X^* is endowed with the weak* topology $\sigma(X^*, X)$ and give, by using some tools of the convex analysis, a new alternative formulation for epi($(f \vee g)^*$), in case $f, g: X \to \overline{\mathbb{R}}$ are proper, convex and lower semicontinuous functions with dom $(f) \cap \text{dom}(g) \neq \emptyset$.

Let us start by remarking that for all $x \in X$

$$f \vee g(x) = \left(\sup_{\lambda \in (0,1)} (\lambda f + (1-\lambda)g)\right)(x).$$

As for all $\lambda \in (0, 1)$ the function $x \to \lambda f(x) + (1 - \lambda)g(x)$ is proper, convex and lower semicontinuous, it must be equal to its biconjugate and so we have (the last equality follows from the definition of the conjugate function)

$$f \lor g = \sup_{\lambda \in (0,1)} (\lambda f + (1-\lambda)g)$$

$$= \sup_{\lambda \in (0,1)} (\lambda f + (1-\lambda)g)^{**}$$

$$= \left[\inf_{\lambda \in (0,1)} (\lambda f + (1-\lambda)g)^{*}\right]^{*}.$$
(3)

Proposition 2.1 The function $x^* \to \inf_{\lambda \in (0,1)} (\lambda f + (1-\lambda)g)^*(x^*)$, $x^* \in X^*$ is proper and convex.

Proof As $(\lambda f + (1 - \lambda)g)^*$ is proper for all $\lambda \in (0, 1)$ it follows that $x^* \to \inf_{\lambda \in (0, 1)} (\lambda f + (1 - \lambda)g)^*(x^*)$ cannot be identical $+\infty$. If there exists an $x^* \in X^*$ such that $\inf_{\lambda \in (0, 1)} (\lambda f + (1 - \lambda)g)^*(x^*) = -\infty$, then $f \vee g$ must be identical $+\infty$ and this contradicts $\operatorname{dom}(f) \cap \operatorname{dom}(g) \neq \emptyset$.

The properness being proved we show next the convexity. For this we consider the function $\Phi: X^* \times \mathbb{R} \to \overline{\mathbb{R}}$ defined by

$$\Phi(x^*, \lambda) = \begin{cases} (\lambda f + (1 - \lambda)g)^*(x^*), & \text{if } x^* \in X^*, \lambda \in (0, 1), \\ +\infty, & \text{otherwise.} \end{cases}$$

Since the function

$$(x^*, \lambda) \to (\lambda f + (1 - \lambda)g)^*(x^*) = \sup_{x \in \text{dom}(f) \cap \text{dom}(g)} \{\langle x^*, x \rangle + \lambda(g(x) - f(x)) - g(x)\}$$

is convex on $X^* \times (0, 1)$, being the pointwise supremum of a family of affine functions, it follows that Φ is also convex. By a well-known result from the convex analysis, the convexity of the *infimal value function* of Φ

$$x^* \to \inf_{\lambda \in \mathbb{R}} \Phi(x^*, \lambda) = \inf_{\lambda \in (0, 1)} (\lambda f + (1 - \lambda)g)^*(x^*)$$

follows immediately and this concludes the proof.

By a similar argument like in the proof above one can easily see that $\operatorname{cl}_{(X^*,\sigma(X^*,X))\times\mathbb{R}}$ $\left(\inf_{\lambda\in(0,1)}(\lambda f+(1-\lambda)g)^*\right)$ is also a proper function, being in the same time convex and lower semicontinuous. Thus, in the view of the Fenchel–Moreau theorem relation, (3) implies that

$$(f \vee g)^* = \operatorname{cl}_{(X^*, \sigma(X^*, X)) \times \mathbb{R}} \left[\inf_{\lambda \in (0, 1)} (\lambda f + (1 - \lambda)g)^* \right]$$

or, equivalently,

$$\operatorname{epi}((f \vee g)^*) = \operatorname{cl}_{(X^*, \sigma(X^*, X)) \times \mathbb{R}} \left(\operatorname{epi} \left(\inf_{\lambda \in (0, 1)} (\lambda f + (1 - \lambda)g)^* \right) \right).$$

The following proposition leads to a first formulation for $epi((f \lor g)^*)$.

Proposition 2.2 Let τ be a vector topology on X^* . Then one has

$$\bigcup_{\lambda \in (0,1)} \operatorname{epi} \left((\lambda f + (1-\lambda)g)^* \right) \subseteq \operatorname{epi} \left(\inf_{\lambda \in (0,1)} (\lambda f + (1-\lambda)g)^* \right)$$
$$\subseteq \operatorname{cl}_{(X^*,\tau) \times \mathbb{R}} \left(\bigcup_{\lambda \in (0,1)} \operatorname{epi} \left((\lambda f + (1-\lambda)g)^* \right) \right).$$

Proof As the first inclusion is obvious, we prove just the second one. For this we consider $(x^*,r)\in \operatorname{epi}\left(\inf_{\lambda\in(0,1)}(\lambda f+(1-\lambda)g)^*\right)$, $\mathcal{V}(x^*)$ an arbitrary open neighborhood of x^* in τ and $\varepsilon>0$. As $\inf_{\lambda\in(0,1)}(\lambda f+(1-\lambda)g)^*\leq r$, there exists an $\lambda_\varepsilon\in(0,1)$ such that $(\lambda_\varepsilon f+(1-\lambda_\varepsilon g)^*(x^*)< r+\varepsilon/2$. Thus $(x^*,r+\varepsilon/2)\in\left(\bigcup_{\lambda\in(0,1)}\operatorname{epi}\left((\lambda f+(1-\lambda)g)^*\right)\right)$. Since $(x^*,r+\varepsilon/2)$ belongs also to $\mathcal{V}(x^*)\times(r-\varepsilon,r+\varepsilon)$, it follows that the intersection of this arbitrary neighborhood of (x^*,r) with $\bigcup_{\lambda\in(0,1)}\operatorname{epi}\left((\lambda f+(1-\lambda)g)^*\right)$ is non-empty. In conclusion (x^*,r) must belong to $\operatorname{cl}_{(X^*,\tau)\times\mathbb{R}}\left(\bigcup_{\lambda\in(0,1)}\operatorname{epi}\left((\lambda f+(1-\lambda)g)^*\right)\right)$.

Taking into account the result in Proposition 2.2 we obtain the following formula for the epigraph of $(f \lor g)^*$

$$\operatorname{epi}((f \vee g)^*) = \operatorname{cl}_{(X^*,\sigma(X^*,X)) \times \mathbb{R}} \left(\operatorname{epi} \left(\inf_{\lambda \in (0,1)} (\lambda f + (1-\lambda)g)^* \right) \right)$$
$$= \operatorname{cl}_{(X^*,\sigma(X^*,X)) \times \mathbb{R}} \left(\bigcup_{\lambda \in (0,1)} \operatorname{epi} \left((\lambda f + (1-\lambda)g)^* \right) \right).$$

Next we take into consideration also the strong (norm) topology on X^* . Obviously, one has that

$$cl_{(X^*,\|\cdot\|_{X^*})\times\mathbb{R}}\left(\bigcup_{\lambda\in(0,1)}\operatorname{epi}\left((\lambda f+(1-\lambda)g)^*\right)\right)$$

$$\subseteq cl_{(X^*,\sigma(X^*,X))\times\mathbb{R}}\left(\bigcup_{\lambda\in(0,1)}\operatorname{epi}\left((\lambda f+(1-\lambda)g)^*\right)\right)=\operatorname{epi}((f\vee g)^*).$$

We prove the following auxiliary result.

Proposition 2.3 The following inclusion always holds

$$\operatorname{epi}\left((f+\delta_{\operatorname{dom}(g)})^*\right)\subseteq\operatorname{cl}_{(X^*,\|\cdot\|_{X^*})\times\mathbb{R}}\left(\bigcup_{\lambda\in(0,1)}\operatorname{epi}\left((\lambda f+(1-\lambda)g)^*\right)\right).$$

Proof Let $(x^*, r) \in \operatorname{epi}\left((f + \delta_{\operatorname{dom}(g)})^*\right)$ or, equivalently, $(f + \delta_{\operatorname{dom}(g)})^*(x^*) \leq r$. Because g is proper, convex and lower semicontinuous it follows that g^* is a proper function and therefore there exists a $y^* \in X^*$ such that $g^*(y^*) \in \mathbb{R}$.

For all $n \ge 1$ we denote $\lambda_n := 1/n$ and $\mu_n := (n-1)/n$ and get

$$(\lambda_{n}g + \mu_{n}f)^{*} (\lambda_{n}y^{*} + \mu_{n}x^{*}) = \sup_{x \in \text{dom}(f) \cap \text{dom}(g)} \left\{ \langle \lambda_{n}y^{*} + \mu_{n}x^{*}, x \rangle - \lambda_{n}g(x) - \mu_{n}f(x) \right\}$$

$$\leq \lambda_{n} \sup_{x \in \text{dom}(f) \cap \text{dom}(g)} \left\{ \langle y^{*}, x \rangle - g(x) \right\}$$

$$+ \mu_{n} \sup_{x \in \text{dom}(f) \cap \text{dom}(g)} \left\{ \langle x^{*}, x \rangle - f(x) \right\}$$

$$\leq \lambda_{n} \sup_{x \in X} \left\{ \langle y^{*}, x \rangle - g(x) \right\}$$

$$+ \mu_{n} \sup_{x \in X} \left\{ \langle x^{*}, x \rangle - (f + \delta_{\text{dom}(g)})(x) \right\}$$

$$= \lambda_{n}g^{*}(y^{*}) + \mu_{n}(f + \delta_{\text{dom}(g)})^{*}(x^{*})$$

$$\leq r + \lambda_{n} \left(g^{*}(y^{*}) - (f + \delta_{\text{dom}(g)})^{*}(x^{*}) \right).$$

Thus for all n > 1 it holds

$$(\lambda_n y^* + \mu_n x^*, r + \lambda_n \left(g^*(y^*) - (f + \delta_{\text{dom}(g)})^*(x^*) \right))$$

$$\in \text{epi} \left((\lambda_n g + \mu_n f)^* \right) \subseteq \bigcup_{\lambda \in (0,1)} \text{epi} \left((\lambda f + (1 - \lambda)g)^* \right),$$

which implies that
$$(x^*, r) \in \operatorname{cl}_{(X^*, \|\cdot\|_{X^*}) \times \mathbb{R}} \left(\bigcup_{\lambda \in (0, 1)} \operatorname{epi} \left((\lambda f + (1 - \lambda)g)^* \right) \right).$$

Because of the symmetry of the functions f and g, by Proposition 2.3, we also have

$$\operatorname{epi}\left((g+\delta_{\operatorname{dom}(f)})^*\right)\subseteq\operatorname{cl}_{(X^*,\|\cdot\|_{X^*})\times\mathbb{R}}\left(\bigcup_{\lambda\in(0,1)}\operatorname{epi}\left((\lambda f+(1-\lambda)g)^*\right)\right)$$

and so (2) implies that

$$\operatorname{epi}((f \vee g)^*) \subseteq \operatorname{cl}_{(X^*, \|\cdot\|_{X^*}) \times \mathbb{R}} \left(\bigcup_{\lambda \in (0,1)} \operatorname{epi} \left((\lambda f + (1-\lambda)g)^* \right) \right).$$

Thus

$$\operatorname{epi}((f \vee g)^{*}) = \operatorname{cl}_{(X^{*}, \sigma(X^{*}, X)) \times \mathbb{R}} \left(\bigcup_{\lambda \in (0, 1)} \operatorname{epi} \left((\lambda f + (1 - \lambda)g)^{*} \right) \right)$$

$$= \operatorname{cl}_{(X^{*}, \|\cdot\|_{X^{*}}) \times \mathbb{R}} \left(\bigcup_{\lambda \in (0, 1)} \operatorname{epi} \left((\lambda f + (1 - \lambda)g)^{*} \right) \right). \tag{4}$$

Using again Proposition 2.2 it follows that

$$\operatorname{epi}((f \vee g)^*) = \operatorname{cl}_{(X^*, \|\cdot\|_{X^*}) \times \mathbb{R}} \left(\operatorname{epi} \left(\inf_{\lambda \in (0, 1)} (\lambda f + (1 - \lambda)g)^* \right) \right),$$

which means that

$$(f \vee g)^* = \operatorname{cl}_{(X^*, \|\cdot\|_{X^*}) \times \mathbb{R}} \left[\inf_{\lambda \in (0, 1)} (\lambda f + (1 - \lambda)g)^* \right].$$
 (5)

In the last part of this section we turn back to the formula for epi($(f \lor g)^*$) given in (2) and show what it becomes, provided the Attouch–Brézis regularity condition is fulfilled. Recall that f and g satisfy the Attouch–Brézis regularity condition (cf. [1]) if

(AB) X is a Banach space and
$$0 \in \text{sgri}(\text{dom}(f) - \text{dom}(g))$$
.

In case f and g are proper, convex and lower semicontinuous functions such that $dom(f) \cap dom(g) \neq \emptyset$ and (AB) is fulfilled, then $(f+g)^* = f^* \Box g^*$ and $f^* \Box g^*$ is exact (see Theorem 1.1 in [1]). One can notice, by means of Corollary 4 in [6], that this is also the case even if X is a Fréchet space.

Let us come now to two propositions, which we not prove here, since the proof of the first one can be found in [3], while the proof of the second one is elementary.

Proposition 2.4 *Let* $f, g: X \to \overline{\mathbb{R}}$ *be proper functions such that* $dom(f) \cap dom(g) \neq \emptyset$. *Then the following statements are equivalent:*

- (i) $epi((f + g)^*) = epi(f^*) + epi(g^*);$
- (ii) $(f+g)^* = f^* \square g^*$ and $f^* \square g^*$ is exact.

Proposition 2.5 Let $f: X \to \overline{\mathbb{R}}$ be a proper function and $\lambda > 0$. Then $epi((\lambda f)^*) = \lambda epi(f^*)$.

Remark 2.1 If f and g are proper, convex and lower semicontinuous functions such that $dom(f) \cap dom(g) \neq \emptyset$, then the statements in Proposition 2.4 are nothing else than assuming that $epi(f^*) + epi(g^*)$ is a closed set in $(X^*, \sigma(X^*, X)) \times \mathbb{R}$. This property remains true even if X is a separated locally convex space (see [3,4]).

Thus, assuming that for f and g the Attouch–Brézis regularity condition is fulfilled, one has

$$\operatorname{epi}((\lambda f + \mu g)^*) = \lambda \operatorname{epi}(f^*) + \mu \operatorname{epi}(g^*), \quad \forall \lambda, \mu > 0.$$

Unfortunately, one cannot apply Theorem 1.1 in [1] for proving that $\operatorname{epi}((f + \delta_{\operatorname{dom}(g)})^*) = \operatorname{epi}(f^*) + \operatorname{epi}(\delta_{\operatorname{dom}(g)}^*)$, as $\delta_{\operatorname{dom}(g)}$ is not necessarily lower semicontinuous. Nevertheless, this follows from Theorem 2.8.7 (v) in [7], since f and $\delta_{\operatorname{dom}(g)}$ are both li-convex functions. Indeed, f is li-convex being convex and lower semicontinuous, while $\delta_{\operatorname{dom}(g)}$ is li-convex being the marginal function of $\delta_{\operatorname{epi}(g)}$ (one can apply Proposition 2.2.18 $(iii) \Rightarrow (i)$ in [7], as $\delta_{\operatorname{epi}(g)}$ is ideally convex and for all $x \in X$ it holds $\delta_{\operatorname{dom}(g)}(x) = \inf_{r \in \mathbb{R}} \delta_{\operatorname{epi}(g)}(x, r)$). Analogously, we get $\operatorname{epi}((g + \delta_{\operatorname{dom}(f)})^*) = \operatorname{epi}(g^*) + \operatorname{epi}(\delta_{\operatorname{dom}(f)}^*)$ and so relation (2) becomes

$$\operatorname{epi}((f \vee g)^*) = \bigcup_{\lambda \in (0,1)} \left(\lambda \operatorname{epi}(f^*) + (1 - \lambda) \operatorname{epi}(g^*) \right)$$

$$\bigcup \left(\operatorname{epi}(f^*) + \operatorname{epi}(\delta_{\operatorname{dom}(g)}^*) \right) \bigcup \left(\operatorname{epi}(g^*) + \operatorname{epi}(\delta_{\operatorname{dom}(f)}^*) \right). \quad (6)$$

Remark 2.2 Let us notice that if the Attouch–Brézis regularity condition is fulfilled, then the conjugate of $f \vee g$ at $x^* \in X^*$ looks like

$$(f \vee g)^{*}(x^{*}) = \min \left\{ \inf_{\substack{\lambda \in (0,1), y^{*}, z^{*} \in X^{*}, \\ \lambda y^{*} + (1-\lambda)z^{*} = x^{*}}} [\lambda f^{*}(y^{*}) + (1-\lambda)g^{*}(z^{*})], \\ \min_{\substack{y^{*}, z^{*} \in X^{*}, \\ y^{*} + z^{*} = x^{*}}} [f^{*}(y^{*}) + \delta_{\text{dom}(g)}^{*}(z^{*})], \\ \min_{\substack{y^{*}, z^{*} \in X^{*}, \\ y^{*} + z^{*} = x^{*}}} [g^{*}(y^{*}) + \delta_{\text{dom}(f)}^{*}(z^{*})] \right\}.$$
(7)

In Remark 3 in [5] Fitzpatrick and Simons give an example which shows that the equality

$$(f \lor g)^*(x^*) = \min_{\substack{\lambda \in [0,1], y^*, z^* \in X^*, \\ \lambda y^* + (1-\lambda)z^* = x^*}} [\lambda f^*(y^*) + (1-\lambda)g^*(z^*)]$$

is not true for all $x^* \in X^*$.

3 Rediscovering the formula for the biconjugate of the pointwise maximum

In the following we prove, by using relation (4), that the functions $(f \lor g)^{**}$ and $f^{**} \lor g^{**}$ are identical on X^{**} , provided the Attouch–Brézis regularity condition (AB) holds. We actually propose a more simple proof than the one given to this statement in [5].

Theorem 3.1 Assume that $f, g: X \to \overline{\mathbb{R}}$ are proper, convex and lower semicontinuous functions such that the Attouch–Brézis regularity condition (AB) is fulfilled. Then for all $x^{**} \in X^{**}$ ($f \lor g$)** $(x^{**}) = f^{**} \lor g^{**}(x^{**})$.

Proof By the properties of the conjugate functions, because of $f(x) \le f \lor g(x)$ and $g(x) \le f \lor g(x)$ for all $x \in X$, we get $f^{**}(x^{**}) \le (f \lor g)^{**}(x^{**})$ and $g^{**}(x^{**}) \le (f \lor g)^{**}(x^{**})$ for all $x^{**} \in X^{**}$. From here, $f^{**} \lor g^{**}(x^{**}) \le (f \lor g)^{**}(x^{**})$ for all $x^{**} \in X^{**}$.

In order to prove the reverse inequality, let be $x^{**} \in X^{**}$ such that $f^{**} \vee g^{**}(x^{**}) < +\infty$. Furthermore, consider an arbitrary $w^* \in \text{dom}((f \vee g)^*)$. Thus, by (4),

$$\begin{split} (w^*,(f\vee g)^*(w^*)) \in \operatorname{epi}(f\vee g)^* &= \operatorname{cl}_{(X^*,\|\cdot\|_{X^*})\times\mathbb{R}} \left(\bigcup_{\lambda\in(0,1)} \operatorname{epi}\left((\lambda f + (1-\lambda)g)^*\right)\right) \\ &= \operatorname{cl}_{(X^*,\|\cdot\|_{X^*})\times\mathbb{R}} \left(\bigcup_{\lambda\in(0,1)} \left(\lambda\operatorname{epi}(f^*) + (1-\lambda)\operatorname{epi}(g^*)\right)\right). \end{split}$$

Then there exist for all $n \geq 1$ $\lambda_n \in (0, 1)$ and $(w_n^*, r_n) \in \lambda_n \operatorname{epi}(f^*) + (1 - \lambda_n) \operatorname{epi}(g^*)$ such that $\lim_{n \to +\infty} \|w_n^* - w^*\|_{X^*} = 0$ and $\lim_{n \to +\infty} r_n = (f \vee g)^*(w^*)$. Further, there exist for all $n \geq 1$ $(u_n^*, s_n) \in \operatorname{epi}(f^*)$ and $(v_n^*, t_n) \in \operatorname{epi}(g^*)$ such that $w_n^* = \lambda_n u_n^* + (1 - \lambda_n) v_n^*$ and $r_n = \lambda_n s_n + (1 - \lambda_n) t_n \geq \lambda_n f^*(u_n^*) + (1 - \lambda_n) g^*(v_n^*)$. Applying the Young–Fenchel inequality we get for all $n \geq 1$

$$r_{n} \geq \lambda_{n}\{\langle x^{**}, u_{n}^{*} \rangle - f^{**}(x^{**})\} + (1 - \lambda_{n})\{\langle x^{**}, v_{n}^{*} \rangle - g^{**}(x^{**})\}$$

$$= \langle x^{**}, \lambda_{n}u_{n}^{*} + (1 - \lambda_{n})v_{n}^{*} \rangle - \lambda_{n}f^{**}(x^{**}) - (1 - \lambda_{n})g^{**}(x^{**})$$

$$\geq \langle x^{**}, w_{n}^{*} \rangle - f^{**} \vee g^{**}(x^{**}).$$

This implies that for all $n \ge 1$, $f^{**} \lor g^{**}(x^{**}) \ge \langle x^{**}, w_n^* \rangle - r_n$ and letting now n converge towards $+\infty$, we obtain $f^{**} \lor g^{**}(x^{**}) \ge \langle x^{**}, w^* \rangle - (f \lor g)^*(w^*)$. Since $w^* \in \text{dom}((f \lor g)^*)$ was arbitrary chosen, we get

$$f^{**} \vee g^{**}(x^{**}) \ge \sup_{w^* \in \text{dom}((f \vee g)^*)} \left\{ \langle x^{**}, w^* \rangle - (f \vee g)^*(w^*) \right\} = (f \vee g)^{**}(x^{**})$$

and this delivers the desired conclusion.

Remark 3.1 C. Zălinescu suggested for Theorem 3.1 the following proof based on relation (5). By using some properties of the conjugate functions one has

$$(f \vee g)^{**} = \left(\operatorname{cl}_{(X^*, \|\cdot\|_{X^*}) \times \mathbb{R}} \left(\inf_{\lambda \in (0, 1)} (\lambda f + (1 - \lambda)g)^*\right)\right)^*$$

$$= \left(\inf_{\lambda \in (0, 1)} (\lambda f + (1 - \lambda)g)^*\right)^*$$

$$= \sup_{\lambda \in (0, 1)} (\lambda f + (1 - \lambda)g)^{**}.$$

Further, using relation (0.2) in [5], Theorem 2.3.1 (v) in [7] and the fact that f^{**} and g^{**} are proper, it holds

$$\sup_{\lambda \in (0,1)} (\lambda f + (1-\lambda)g)^{**} = \sup_{\lambda \in (0,1)} [(\lambda f)^{**} + ((1-\lambda)g)^{**}]$$
$$= \sup_{\lambda \in (0,1)} [\lambda f^{**} + (1-\lambda)g^{**}]$$
$$= f^{**} \vee g^{**}.$$

Remark 3.2 Recently in [2] it was shown that if $\operatorname{co}(\operatorname{epi}(f^*) \cup \operatorname{epi}(g^*))$ is closed in $(X^*, \sigma(X^*, X)) \times \mathbb{R}$, then $(f \vee g)^{**} = f^{**} \vee g^{**}$ on X^{**} , provided that $f, g : X \to \overline{\mathbb{R}}$ are proper, convex and lower semicontinuous functions and X is a separated locally convex space.

Acknowledgements The authors are thankful to the two reviewers for their valuable comments and remarks which improved the quality of the paper.

References

- Attouch, H., Brézis, H.: Duality for the sum of convex functions in general Banach spaces. In: Barroso, J.A. (ed.) Aspects of Mathematics and Its Applications., pp. 125–133. North-Holland, Mathematical Library, Amsterdam (1986)
- 2. Bot, R.I., Grad, S.M.: Regularity conditions for formulae of biconjugate functions (submitted)
- Bot, R.I., Wanka, G.: A weaker regularity condition for subdifferential calculus and Fenchel duality in infinite dimensional spaces. In: Nonlinear Anal. Theory Methods Appl. 64(12), 1367–1381 (2006)
- Burachik, R.S., Jeyakumar, V.: A dual condition for the convex subdifferential sum formula with applications. J. Convex Anal. 12(2), 279–290 (2005)
- Fitzpatrick, S.P., Simons, S.: On the pointwise maximum of convex functions. Proc. Am. Math. Soc. 128(12), 3553–3561 (2000)
- Zălinescu, C.: Solvability results for sublinear functions and operators. Zeitschrift für Operations Research 31, A79–A101 (1987)
- 7. Zălinescu, C.: Convex analysis in general vector spaces. World Scientific, Singapore (2002)

